We’re announcing GPT-4 Omni, our new flagship model which can reason across audio, vision, and text in real time.
We’ve created GPT-4, the latest milestone in OpenAI’s effort in scaling up deep learning. GPT-4 is a large multimodal model (accepting image and text inputs, emitting text outputs) that, while less capable than humans in many real-world scenarios, exhibits human-level performance on various professional and academic benchmarks.
We built a neural theorem prover for Lean that learned to solve a variety of challenging high-school olympiad problems, including problems from the AMC12 and AIME competitions, as well as two problems adapted from the IMO.
We’ve trained a system that solves grade school math problems with nearly twice the accuracy of a fine-tuned GPT-3 model. It solves about 90% as many problems as real kids: a small sample of 9-12 year olds scored 60% on a test from our dataset, while our system scored 55% on those same problems.
We’ve discovered neurons in CLIP that respond to the same concept whether presented literally, symbolically, or conceptually. This may explain CLIP’s accuracy in classifying surprising visual renditions of concepts, and is also an important step toward understanding the associations and biases that CLIP and similar models learn.
We’ve trained a neural network called DALL·E that creates images from text captions for a wide range of concepts expressible in natural language.
We’re introducing a neural network called CLIP which efficiently learns visual concepts from natural language supervision. CLIP can be applied to any visual classification benchmark by simply providing the names of the visual categories to be recognized, similar to the “zero-shot” capabilities of GPT-2 and GPT-3.
We’ve applied reinforcement learning from human feedback to train language models that are better at summarization.