We’re announcing GPT-4 Omni, our new flagship model which can reason across audio, vision, and text in real time.
We’ve created GPT-4, the latest milestone in OpenAI’s effort in scaling up deep learning. GPT-4 is a large multimodal model (accepting image and text inputs, emitting text outputs) that, while less capable than humans in many real-world scenarios, exhibits human-level performance on various professional and academic benchmarks.
We’ve observed agents discovering progressively more complex tool use while playing a simple game of hide-and-seek. Through training in our new simulated hide-and-seek environment, agents build a series of six distinct strategies and counterstrategies, some of which we did not know our environment supported. The self-supervised emergent complexity in this simple environment further suggests that multi-agent co-adaptation may one day produce extremely complex and intelligent behavior.
We’re releasing a Neural MMO, a massively multiagent game environment for reinforcement learning agents. Our platform supports a large, variable number of agents within a persistent and open-ended task. The inclusion of many agents and species leads to better exploration, divergent niche formation, and greater overall competence.
We’ve found that self-play allows simulated AIs to discover physical skills like tackling, ducking, faking, kicking, catching, and diving for the ball, without explicitly designing an environment with these skills in mind. Self-play ensures that the environment is always the right difficulty for an AI to improve. Taken alongside our Dota 2 self-play results, we have increasing confidence that self-play will be a core part of powerful AI systems in the future.
We’re releasing an algorithm which accounts for the fact that other agents are learning too, and discovers self-interested yet collaborative strategies like tit-for-tat in the iterated prisoner’s dilemma. This algorithm, Learning with Opponent-Learning Awareness (LOLA), is a small step towards agents that model other minds.
Multiagent environments where agents compete for resources are stepping stones on the path to AGI. Multiagent environments have two useful properties: first, there is a natural curriculum—the difficulty of the environment is determined by the skill of your competitors (and if you’re competing against clones of yourself, the environment exactly matches your skill level). Second, a multiagent environment has no stable equilibrium: no matter how smart an agent is, there’s always pressure to get smarter. These environments have a very different feel from traditional environments, and it’ll take a lot more research before we become good at them.